Phase Response Analysis of the Circadian Clock in *Neurospora crassa*

Jacob Bellman\(^1\), Jaekyoung Kim\(^2,3\), Sookkyung Lim\(^1\), and Christian I. Hong\(^4\)

\(^1\) Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, USA
\(^2\) Mathematical Biosciences Institute, The Ohio State University, Columbus, OH 43210, USA
\(^3\) Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
\(^4\) Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA

Introduction

Circadian rhythm plays a vital role in maintaining the daily activities of ~24 hours in many organisms. Malfunction of the circadian clock may be dangerous to an organism, and even life threatening. Disorders associated with circadian malfunction include sleep disorders, jet lag, and even cancer. In this research, mathematical models simulate the circadian clock of the fungus *Neurospora crassa*, specifically focusing on the phase of the clock in response to light. Our results suggest a crucial balance of molecular reactions to light is necessary for optimal phase response. The results from this research may provide new information for treating circadian-related diseases.

Neurospora Circadian Clock

The negative feedback loop between frequency (frq) and the transcription factor White Collar Complex (WCC) is the core mechanism of the Neurospora circadian clock that produces robust oscillations. Reactions to light include induced transcription of frq, wc-1, and vvd as well as degradation of WCC.

Experimental Reactions to light in the Neurospora Circadian Clock

The plot of the change in phase against the time of an applied pulse is known as a phase response curve (PRC). An experimental PRC of Neurospora in response to light can be found below [1].

A Basic Circadian Model

\[
\frac{dW}{dt} = k_6 - k_5 W + k_2 W F_m
\]

\[
\frac{df_{m}}{dt} = k_3 f_{m} + p(t)
\]

A Complex Circadian Model [4]

The model on the left [4] produces an incorrect PRC shape with the original parameter set, as seen below.

References

Acknowledgements

Supported by the Defense Advanced Research Project Agency (D12AP00005), the National Institute of Health (T32 Training Grant), and the National Science Foundation (OMS-0931642).